
8 | ATOMIC STRUCTURE

Figure 8.1 NGC1763 is an emission nebula in the Large Magellanic Cloud, which is a satellite galaxy to our Milky Way
Galaxy. The colors we see can be explained by applying the ideas of quantum mechanics to atomic structure. (credit:
modification of work by NASA, ESA, and Josh Lake)
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Introduction
In this chapter, we use quantum mechanics to study the structure and properties of atoms. This study introduces ideas and
concepts that are necessary to understand more complex systems, such as molecules, crystals, and metals. As we deepen
our understanding of atoms, we build on things we already know, such as Rutherford’s nuclear model of the atom, Bohr’s
model of the hydrogen atom, and de Broglie’s wave hypothesis.

Figure 8.1 is NGC1763, an emission nebula in the small galaxy known as the Large Magellanic Cloud, which is a satellite
of the Milky Way Galaxy. Ultraviolet light from hot stars ionizes the hydrogen atoms in the nebula. As protons and electrons
recombine, radiation of different frequencies is emitted. The details of this process can be correctly predicted by quantum
mechanics and are examined in this chapter.
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8.1 | The Hydrogen Atom

Learning Objectives

By the end of this section, you will be able to:

• Describe the hydrogen atom in terms of wave function, probability density, total energy, and
orbital angular momentum

• Identify the physical significance of each of the quantum numbers ( n, l, m ) of the hydrogen

atom

• Distinguish between the Bohr and Schrödinger models of the atom

• Use quantum numbers to calculate important information about the hydrogen atom

The hydrogen atom is the simplest atom in nature and, therefore, a good starting point to study atoms and atomic structure.
The hydrogen atom consists of a single negatively charged electron that moves about a positively charged proton (Figure
8.2). In Bohr’s model, the electron is pulled around the proton in a perfectly circular orbit by an attractive Coulomb force.
The proton is approximately 1800 times more massive than the electron, so the proton moves very little in response to the
force on the proton by the electron. (This is analogous to the Earth-Sun system, where the Sun moves very little in response
to the force exerted on it by Earth.) An explanation of this effect using Newton’s laws is given in Photons and Matter
Waves.

Figure 8.2 A representation of the Bohr model of the
hydrogen atom.

With the assumption of a fixed proton, we focus on the motion of the electron.

In the electric field of the proton, the potential energy of the electron is

(8.1)U(r) = −ke2
r ,

where k = 1/4πε0 and r is the distance between the electron and the proton. As we saw earlier, the force on an object is

equal to the negative of the gradient (or slope) of the potential energy function. For the special case of a hydrogen atom, the
force between the electron and proton is an attractive Coulomb force.

Notice that the potential energy function U(r) does not vary in time. As a result, Schrödinger’s equation of the hydrogen
atom reduces to two simpler equations: one that depends only on space (x, y, z) and another that depends only on time (t).
(The separation of a wave function into space- and time-dependent parts for time-independent potential energy functions is
discussed in Quantum Mechanics.) We are most interested in the space-dependent equation:

(8.2)−ℏ2

2me

⎛

⎝
⎜∂2ψ

∂ x2 + ∂2ψ
∂ y2 + ∂2ψ

∂z2

⎞

⎠
⎟ − ke2

r ψ = Eψ ,

where ψ = ψ(x, y, z) is the three-dimensional wave function of the electron, me is the mass of the electron, and E is the

total energy of the electron. Recall that the total wave function Ψ(x, y, z, t), is the product of the space-dependent wave
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function ψ = ψ(x, y, z) and the time-dependent wave function φ = φ(t) .

In addition to being time-independent, U(r) is also spherically symmetrical. This suggests that we may solve Schrödinger’s
equation more easily if we express it in terms of the spherical coordinates (r, θ, ϕ) instead of rectangular coordinates

(x, y, z) . A spherical coordinate system is shown in Figure 8.3. In spherical coordinates, the variable r is the radial

coordinate, θ is the polar angle (relative to the vertical z-axis), and ϕ is the azimuthal angle (relative to the x-axis). The

relationship between spherical and rectangular coordinates is x = r sin θ cos ϕ, y = r sin θ sin ϕ, z = r cos θ.

Figure 8.3 The relationship between the spherical and
rectangular coordinate systems.

The factor r sin θ is the magnitude of a vector formed by the projection of the polar vector onto the xy-plane. Also, the

coordinates of x and y are obtained by projecting this vector onto the x- and y-axes, respectively. The inverse transformation
gives

r = x2 + y2 + z2, θ = cos−1 ⎛
⎝
z
r

⎞
⎠, ϕ = cos−1

⎛

⎝
⎜ x

x2 + y2

⎞

⎠
⎟.

Schrödinger’s wave equation for the hydrogen atom in spherical coordinates is discussed in more advanced courses in
modern physics, so we do not consider it in detail here. However, due to the spherical symmetry of U(r), this equation
reduces to three simpler equations: one for each of the three coordinates (r, θ, and ϕ). Solutions to the time-independent

wave function are written as a product of three functions:

ψ(r, θ, ϕ) = R(r)Θ(θ)Φ(ϕ),

where R is the radial function dependent on the radial coordinate r only; Θ is the polar function dependent on the polar

coordinate θ only; and Φ is the phi function of ϕ only. Valid solutions to Schrödinger’s equation ψ(r, θ, ϕ) are labeled

by the quantum numbers n, l, and m.

n : principal quantum number
l : angular momentum quantum number
m : angular momentum projection quantum number

(The reasons for these names will be explained in the next section.) The radial function R depends only on n and l; the polar
function Θ depends only on l and m; and the phi function Φ depends only on m. The dependence of each function on

quantum numbers is indicated with subscripts:

ψnlm(r, θ, ϕ) = Rnl(r)Θlm(θ)Φm(ϕ).

Not all sets of quantum numbers (n, l, m) are possible. For example, the orbital angular quantum number l can never be
greater or equal to the principal quantum number n(l < n) . Specifically, we have
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n = 1, 2, 3, …
l = 0, 1, 2, …, (n − 1)

m = −l, (−l + 1), …, 0, …, ( + l − 1), + l

Notice that for the ground state, n = 1 , l = 0 , and m = 0 . In other words, there is only one quantum state with the wave

function for n = 1 , and it is ψ100 . However, for n = 2 , we have

l = 0, m = 0
l = 1, m = −1, 0, 1.

Therefore, the allowed states for the n = 2 state are ψ200 , ψ21 − 1, ψ210 , and ψ211 . Example wave functions for the

hydrogen atom are given in Table 8.1. Note that some of these expressions contain the letter i, which represents −1 .

When probabilities are calculated, these complex numbers do not appear in the final answer.

n = 1, l = 0, ml = 0 ψ100 = 1
π

1
a0

3/2e
−r/a0

n = 2, l = 0, ml = 0 ψ200 = 1
4 2π

1
a0

3/2
⎛
⎝2 − r

a0
⎞
⎠e

−r/2a0

n = 2, l = 1, ml = −1 ψ21 − 1 = 1
8 π

1
a0

3/2
r

a0
e

−r/2a0 sin θe−iϕ

n = 2, l = 1, ml = 0 ψ210 = 1
4 2π

1
a0

3/2
r

a0
e

−r/2a0 cos θ

n = 2, l = 1, ml = 1 ψ211 = 1
8 π

1
a0

3/2
r

a0
e

−r/2a0 sin θeiϕ

Table 8.1 Wave Functions of the Hydrogen Atom

Physical Significance of the Quantum Numbers
Each of the three quantum numbers of the hydrogen atom (n, l, m) is associated with a different physical quantity. The
principal quantum number n is associated with the total energy of the electron, En . According to Schrödinger’s equation:

(8.3)
En = −

⎛

⎝
⎜ me k2 e4

22

⎞

⎠
⎟⎛
⎝

1
n2

⎞
⎠ = −E0

⎛
⎝

1
n2

⎞
⎠,

where E0 = −13.6 eV. Notice that this expression is identical to that of Bohr’s model. As in the Bohr model, the electron

in a particular state of energy does not radiate.

Example 8.1

How Many Possible States?

For the hydrogen atom, how many possible quantum states correspond to the principal number n = 3 ? What are

the energies of these states?

Strategy

For a hydrogen atom of a given energy, the number of allowed states depends on its orbital angular momentum.
We can count these states for each value of the principal quantum number, n = 1, 2, 3. However, the total energy

depends on the principal quantum number only, which means that we can use Equation 8.3 and the number of
states counted.
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Solution

If n = 3 , the allowed values of l are 0, 1, and 2. If l = 0 , m = 0 (1 state). If l = 1 , m = − 1, 0, + 1 (3

states); and if l = 2 , m = − 2, − 1, 0, + 1, + 2 (5 states). In total, there are 1 + 3 + 5 = 9 allowed states.

Because the total energy depends only on the principal quantum number, n = 3 , the energy of each of these

states is

En3 = −E0
⎛
⎝

1
n2

⎞
⎠ = −13.6 eV

9 = −1.51 eV.

Significance

An electron in a hydrogen atom can occupy many different angular momentum states with the very same energy.
As the orbital angular momentum increases, the number of the allowed states with the same energy increases.

The angular momentum orbital quantum number l is associated with the orbital angular momentum of the electron in
a hydrogen atom. Quantum theory tells us that when the hydrogen atom is in the state ψnlm , the magnitude of its orbital

angular momentum is

(8.4)L = l(l + 1)ℏ,

where

l = 0, 1, 2, …, (n − 1).

This result is slightly different from that found with Bohr’s theory, which quantizes angular momentum according to the
rule L = n, where n = 1, 2, 3, ....

Quantum states with different values of orbital angular momentum are distinguished using spectroscopic notation (Table
8.2). The designations s, p, d, and f result from early historical attempts to classify atomic spectral lines. (The letters stand
for sharp, principal, diffuse, and fundamental, respectively.) After f, the letters continue alphabetically.

The ground state of hydrogen is designated as the 1s state, where “1” indicates the energy level (n = 1) and “s” indicates

the orbital angular momentum state ( l = 0 ). When n = 2 , l can be either 0 or 1. The n = 2 , l = 0 state is designated

“2s.” The n = 2 , l = 1 state is designated “2p.” When n = 3 , l can be 0, 1, or 2, and the states are 3s, 3p, and 3d,

respectively. Notation for other quantum states is given in Table 8.3.

The angular momentum projection quantum number m is associated with the azimuthal angle ϕ (see Figure 8.3) and

is related to the z-component of orbital angular momentum of an electron in a hydrogen atom. This component is given by

(8.5)Lz = mℏ,

where

m = −l, −l + 1, …, 0, …, + l − 1, l.

The z-component of angular momentum is related to the magnitude of angular momentum by

(8.6)Lz = L cos θ,

where θ is the angle between the angular momentum vector and the z-axis. Note that the direction of the z-axis is

determined by experiment—that is, along any direction, the experimenter decides to measure the angular momentum. For
example, the z-direction might correspond to the direction of an external magnetic field. The relationship between Lz and L
is given in Figure 8.4.
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Figure 8.4 The z-component of angular momentum is
quantized with its own quantum number m.

Orbital Quantum Number l Angular Momentum State Spectroscopic Name

0 0 s Sharp

1 2h p Principal

2 6h d Diffuse

3 12h f Fundamental

4 20h g

5 30h h

Table 8.2 Spectroscopic Notation and Orbital Angular Momentum

l = 0 l = 1 l = 2 l = 3 l = 4 l = 5

n = 1 1s

n = 2 2s 2p

n = 3 3s 3p 3d

n = 4 4s 4p 4d 4f

n = 5 5s 5p 5d 5f 5g

n = 6 6s 6p 6d 6f 6g 6h

Table 8.3 Spectroscopic Description of Quantum States

The quantization of Lz is equivalent to the quantization of θ . Substituting l(l + 1)ℏ for L and m for Lz into this

equation, we find

(8.7)mℏ = l(l + 1)ℏ cos θ.

Thus, the angle θ is quantized with the particular values

(8.8)
θ = cos−1 ⎛

⎝
m

l(l + 1)
⎞
⎠.

Notice that both the polar angle ( θ ) and the projection of the angular momentum vector onto an arbitrary z-axis ( Lz ) are

quantized.

360 Chapter 8 | Atomic Structure

This OpenStax book is available for free at http://cnx.org/content/col12067/1.9



The quantization of the polar angle for the l = 3 state is shown in Figure 8.5. The orbital angular momentum vector lies

somewhere on the surface of a cone with an opening angle θ relative to the z-axis (unless m = 0, in which case θ = 90°
and the vector points are perpendicular to the z-axis).

Figure 8.5 The quantization of orbital angular momentum.
Each vector lies on the surface of a cone with axis along the
z-axis.

A detailed study of angular momentum reveals that we cannot know all three components simultaneously. In the previous
section, the z-component of orbital angular momentum has definite values that depend on the quantum number m. This
implies that we cannot know both x- and y-components of angular momentum, Lx and Ly , with certainty. As a result, the

precise direction of the orbital angular momentum vector is unknown.

Example 8.2

What Are the Allowed Directions?

Calculate the angles that the angular momentum vector L→ can make with the z-axis for l = 1 , as shown in

Figure 8.6.
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Figure 8.6 The component of a given angular momentum
along the z-axis (defined by the direction of a magnetic field)
can have only certain values. These are shown here for l = 1 ,

for which m = −1, 0, and + 1. The direction of L→ is

quantized in the sense that it can have only certain angles
relative to the z-axis.

Strategy

The vectors L→ and L→ z (in the z-direction) form a right triangle, where L→ is the hypotenuse and L→ z is

the adjacent side. The ratio of Lz to | L→ | is the cosine of the angle of interest. The magnitudes L = | L→ | and

Lz are given by

L = l(l + 1)ℏ and Lz = mℏ.

Solution

We are given l = 1 , so ml can be +1, 0, or − 1. Thus, L has the value given by

L = l(l + 1)ℏ = 2ℏ.

The quantity Lz can have three values, given by Lz = ml ℏ .

Lz = ml ℏ =
⎧

⎩
⎨

ℏ, ml = + 1
0, ml = 0

−ℏ, ml = −1

As you can see in Figure 8.6, cos θ = Lz /L, so for m = + 1 , we have

cos θ1 = LZ
L = ℏ

2ℏ
= 1

2
= 0.707.
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8.1

Thus,

θ1 = cos−1 0.707 = 45.0°.

Similarly, for m = 0 , we find cos θ2 = 0; this gives

θ2 = cos−1 0 = 90.0°.

Then for ml = −1 :

cos θ3 = LZ
L = −ℏ

2ℏ
= − 1

2
= −0.707,

so that

θ3 = cos−1(−0.707) = 135.0°.

Significance

The angles are consistent with the figure. Only the angle relative to the z-axis is quantized. L can point in any
direction as long as it makes the proper angle with the z-axis. Thus, the angular momentum vectors lie on cones,
as illustrated. To see how the correspondence principle holds here, consider that the smallest angle ( θ1 in the

example) is for the maximum value of ml, namely ml = l. For that smallest angle,

cos θ = Lz
L = l

l(l + 1)
,

which approaches 1 as l becomes very large. If cos θ = 1 , then θ = 0 º . Furthermore, for large l, there are

many values of ml , so that all angles become possible as l gets very large.

Check Your Understanding Can the magnitude of Lz ever be equal to L?

Using the Wave Function to Make Predictions
As we saw earlier, we can use quantum mechanics to make predictions about physical events by the use of probability
statements. It is therefore proper to state, “An electron is located within this volume with this probability at this time,” but
not, “An electron is located at the position (x, y, z) at this time.” To determine the probability of finding an electron in a

hydrogen atom in a particular region of space, it is necessary to integrate the probability density |ψnlm |2 over that region:

(8.9)Probability = ∫
volume

|ψnlm |2dV ,

where dV is an infinitesimal volume element. If this integral is computed for all space, the result is 1, because the probability
of the particle to be located somewhere is 100% (the normalization condition). In a more advanced course on modern

physics, you will find that |ψnlm |2 = ψnlm* ψnlm, where ψnlm* is the complex conjugate. This eliminates the occurrences

of i = −1 in the above calculation.

Consider an electron in a state of zero angular momentum ( l = 0 ). In this case, the electron’s wave function depends only

on the radial coordinate r. (Refer to the states ψ100 and ψ200 in Table 8.1.) The infinitesimal volume element corresponds

to a spherical shell of radius r and infinitesimal thickness dr, written as

(8.10)dV = 4πr2 dr.

The probability of finding the electron in the region r to r + dr (“at approximately r”) is
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(8.11)
P(r)dr = |ψn00 |24πr2 dr.

Here P(r) is called the radial probability density function (a probability per unit length). For an electron in the ground
state of hydrogen, the probability of finding an electron in the region r to r + dr is

(8.12)|ψn00 |24πr2 dr = (4/a0
3)r2 exp(−2r/a0)dr,

where a0 = 0.5 angstroms. The radial probability density function P(r) is plotted in Figure 8.7. The area under the curve

between any two radial positions, say r1 and r2 , gives the probability of finding the electron in that radial range. To

find the most probable radial position, we set the first derivative of this function to zero ( dP/dr = 0 ) and solve for r. The

most probable radial position is not equal to the average or expectation value of the radial position because |ψn00 |2 is not

symmetrical about its peak value.

Figure 8.7 The radial probability density function for the
ground state of hydrogen.

If the electron has orbital angular momentum ( l ≠ 0 ), then the wave functions representing the electron depend on the

angles θ and ϕ; that is, ψnlm = ψnlm (r, θ , ϕ ). Atomic orbitals for three states with n = 2 and l = 1 are shown

in Figure 8.8. An atomic orbital is a region in space that encloses a certain percentage (usually 90%) of the electron
probability. (Sometimes atomic orbitals are referred to as “clouds” of probability.) Notice that these distributions are
pronounced in certain directions. This directionality is important to chemists when they analyze how atoms are bound
together to form molecules.

Figure 8.8 The probability density distributions for three states with n = 2
and l = 1 . The distributions are directed along the (a) x-axis, (b) y-axis, and

(c) z-axis.

A slightly different representation of the wave function is given in Figure 8.9. In this case, light and dark regions
indicate locations of relatively high and low probability, respectively. In contrast to the Bohr model of the hydrogen atom,
the electron does not move around the proton nucleus in a well-defined path. Indeed, the uncertainty principle makes it
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impossible to know how the electron gets from one place to another.

Figure 8.9 Probability clouds for the electron in the ground state and several
excited states of hydrogen. The probability of finding the electron is indicated by
the shade of color; the lighter the coloring, the greater the chance of finding the
electron.

8.2 | Orbital Magnetic Dipole Moment of the Electron

Learning Objectives

By the end of this section, you will be able to:

• Explain why the hydrogen atom has magnetic properties

• Explain why the energy levels of a hydrogen atom associated with orbital angular momentum
are split by an external magnetic field

• Use quantum numbers to calculate the magnitude and direction of the orbital magnetic dipole
moment of a hydrogen atom

In Bohr’s model of the hydrogen atom, the electron moves in a circular orbit around the proton. The electron passes by a
particular point on the loop in a certain time, so we can calculate a current I = Q/t . An electron that orbits a proton in a

hydrogen atom is therefore analogous to current flowing through a circular wire (Figure 8.10). In the study of magnetism,
we saw that a current-carrying wire produces magnetic fields. It is therefore reasonable to conclude that the hydrogen atom
produces a magnetic field and interacts with other magnetic fields.
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Figure 8.10 (a) Current flowing through a circular wire is analogous to (b) an electron that orbits a proton in
a hydrogen atom.

The orbital magnetic dipole moment is a measure of the strength of the magnetic field produced by the orbital
angular momentum of an electron. From Force and Torque on a Current Loop (http://cnx.org/content/m58743/
latest/#fs-id1171360245659) , the magnitude of the orbital magnetic dipole moment for a current loop is

(8.13)µ = IA,

where I is the current and A is the area of the loop. (For brevity, we refer to this as the magnetic moment.) The current I
associated with an electron in orbit about a proton in a hydrogen atom is

(8.14)I = e
T ,

where e is the magnitude of the electron charge and T is its orbital period. If we assume that the electron travels in a perfectly
circular orbit, the orbital period is

(8.15)T = 2πr
v ,

where r is the radius of the orbit and v is the speed of the electron in its orbit. Given that the area of a circle is πr2 , the

absolute magnetic moment is

(8.16)µ = IA = e
⎛
⎝
2πr

v
⎞
⎠
πr2 = evr

2 .

It is helpful to express the magnetic momentum µ in terms of the orbital angular momentum ( L→ = r→ × p→ ). Because

the electron orbits in a circle, the position vector r→ and the momentum vector p→ form a right angle. Thus, the

magnitude of the orbital angular momentum is

(8.17)L = | L→ | = | r→ × p→ | = rp sin θ = rp = rmv.

Combining these two equations, we have

(8.18)µ = ⎛
⎝

e
2me

⎞
⎠L.

In full vector form, this expression is written as

(8.19)µ→ = −⎛
⎝

e
2me

⎞
⎠ L→ .

The negative sign appears because the electron has a negative charge. Notice that the direction of the magnetic moment of
the electron is antiparallel to the orbital angular momentum, as shown in Figure 8.10(b). In the Bohr model of the atom,

the relationship between µ→ and L→ in Equation 8.19 is independent of the radius of the orbit.

The magnetic moment µ can also be expressed in terms of the orbital angular quantum number l. Combining Equation
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8.18 and Equation 8.15, the magnitude of the magnetic moment is

(8.20)µ = ⎛
⎝

e
2me

⎞
⎠L = ⎛

⎝
e

2me

⎞
⎠ l(l + 1)ℏ = µB l(l + 1).

The z-component of the magnetic moment is

(8.21)µz = −⎛
⎝

e
2me

⎞
⎠Lz = −⎛

⎝
e

2me

⎞
⎠mℏ = −µB m.

The quantity µB is a fundamental unit of magnetism called the Bohr magneton, which has the value

9.3 × 10−24 joule/tesla (J/T) or 5.8 × 10−5 eV/T. Quantization of the magnetic moment is the result of quantization of

the orbital angular momentum.

As we will see in the next section, the total magnetic dipole moment of the hydrogen atom is due to both the orbital motion
of the electron and its intrinsic spin. For now, we ignore the effect of electron spin.

Example 8.3

Orbital Magnetic Dipole Moment

What is the magnitude of the orbital dipole magnetic moment µ of an electron in the hydrogen atom in the (a) s

state, (b) p state, and (c) d state? (Assume that the spin of the electron is zero.)

Strategy

The magnetic momentum of the electron is related to its orbital angular momentum L. For the hydrogen atom,
this quantity is related to the orbital angular quantum number l. The states are given in spectroscopic notation,
which relates a letter (s, p, d, etc.) to a quantum number.

Solution

The magnitude of the magnetic moment is given in Equation 8.20:

µ = ⎛
⎝

e
2me

⎞
⎠L = ⎛

⎝
e

2me

⎞
⎠ l(l + 1)ℏ = µB l(l + 1).

a. For the s state, l = 0 so we have µ = 0 and µz = 0.

b. For the p state, l = 1 and we have

µ = µB 1(1 + 1) = 2µB

µz = −µB m, where m = (−1, 0, 1), so
µz = µB, 0, −µB.

c. For the d state, l = 2 and we obtain

µ = µB 2(2 + 1) = 6µB

µz = −µB m, where m = (−2, − 1, 0, 1, 2), so
µz = 2µB, µB, 0, −µB, −2µB.

Significance

In the s state, there is no orbital angular momentum and therefore no magnetic moment. This does not mean
that the electron is at rest, just that the overall motion of the electron does not produce a magnetic field. In the
p state, the electron has a magnetic moment with three possible values for the z-component of this magnetic
moment; this means that magnetic moment can point in three different polar directions—each antiparallel to the
orbital angular momentum vector. In the d state, the electron has a magnetic moment with five possible values
for the z-component of this magnetic moment. In this case, the magnetic moment can point in five different polar
directions.

A hydrogen atom has a magnetic field, so we expect the hydrogen atom to interact with an external magnetic field—such as
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the push and pull between two bar magnets. From Force and Torque on a Current Loop (http://cnx.org/content/
m58743/latest/#fs-id1171360288680) , we know that when a current loop interacts with an external magnetic field

B→ , it experiences a torque given by

(8.22)τ→ = I⎛
⎝ A

→
× B→ ⎞

⎠ = µ→ × B→ ,

where I is the current, A
→

is the area of the loop, µ→ is the magnetic moment, and B→ is the external magnetic

field. This torque acts to rotate the magnetic moment vector of the hydrogen atom to align with the external magnetic
field. Because mechanical work is done by the external magnetic field on the hydrogen atom, we can talk about energy
transformations in the atom. The potential energy of the hydrogen atom associated with this magnetic interaction is given
by Equation 8.23:

(8.23)U = − µ→ · B→ .

If the magnetic moment is antiparallel to the external magnetic field, the potential energy is large, but if the magnetic
moment is parallel to the field, the potential energy is small. Work done on the hydrogen atom to rotate the atom’s magnetic
moment vector in the direction of the external magnetic field is therefore associated with a drop in potential energy. The
energy of the system is conserved, however, because a drop in potential energy produces radiation (the emission of a
photon). These energy transitions are quantized because the magnetic moment can point in only certain directions.

If the external magnetic field points in the positive z-direction, the potential energy associated with the orbital magnetic
dipole moment is

(8.24)U(θ) = −µB cos θ = −µz B = −(−µB m)B = mµB B,

where µB is the Bohr magneton and m is the angular momentum projection quantum number (or magnetic orbital

quantum number), which has the values

(8.25)m = −l, −l + 1,... , 0,... , l − 1, l.

For example, in the l = 1 electron state, the total energy of the electron is split into three distinct energy levels

corresponding to U = −µB B, 0, µB B.

The splitting of energy levels by an external magnetic field is called the Zeeman effect. Ignoring the effects of electron
spin, transitions from the l = 1 state to a common lower energy state produce three closely spaced spectral lines (Figure

8.11, left column). Likewise, transitions from the l = 2 state produce five closely spaced spectral lines (right column). The

separation of these lines is proportional to the strength of the external magnetic field. This effect has many applications. For
example, the splitting of lines in the hydrogen spectrum of the Sun is used to determine the strength of the Sun’s magnetic
field. Many such magnetic field measurements can be used to make a map of the magnetic activity at the Sun’s surface
called a magnetogram (Figure 8.12).

368 Chapter 8 | Atomic Structure

This OpenStax book is available for free at http://cnx.org/content/col12067/1.9

http://cnx.org/content/m58743/latest/#fs-id1171360288680
http://cnx.org/content/m58743/latest/#fs-id1171360288680


Figure 8.11 The Zeeman effect refers to the splitting of
spectral lines by an external magnetic field. In the left column,
the energy splitting occurs due to transitions from the state
(n = 2, l = 1 ) to a lower energy state; and in the right column,

energy splitting occurs due to transitions from the state
(n = 2, l = 2) to a lower-energy state. The separation of these

lines is proportional to the strength of the external magnetic
field.

Figure 8.12 A magnetogram of the Sun. The bright and dark
spots show significant magnetic activity at the surface of the
Sun. (credit: NASA, SDO)
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8.3 | Electron Spin

Learning Objectives

By the end of this section, you will be able to:

• Express the state of an electron in a hydrogen atom in terms of five quantum numbers

• Use quantum numbers to calculate the magnitude and direction of the spin and magnetic
moment of an electron

• Explain the fine and hyperfine structure of the hydrogen spectrum in terms of magnetic
interactions inside the hydrogen atom

In this section, we consider the effects of electron spin. Spin introduces two additional quantum numbers to our model of the
hydrogen atom. Both were discovered by looking at the fine structure of atomic spectra. Spin is a fundamental characteristic
of all particles, not just electrons, and is analogous to the intrinsic spin of extended bodies about their own axes, such as the
daily rotation of Earth.

Spin is quantized in the same manner as orbital angular momentum. It has been found that the magnitude of the intrinsic
spin angular momentum S of an electron is given by

(8.26)S = s(s + 1)ℏ,

where s is defined to be the spin quantum number. This is similar to the quantization of L given in Equation 8.4, except
that the only value allowed for s for an electron is s = 1/2. The electron is said to be a “spin-half particle.” The spin

projection quantum number ms is associated with the z-components of spin, expressed by

(8.27)Sz = ms ℏ.

In general, the allowed quantum numbers are

(8.28)ms = −s, −s + 1, …, 0, …, + s − 1, s.

For the special case of an electron ( s = 1/2 ),

(8.29)ms = − 1
2, 1

2.

Directions of intrinsic spin are quantized, just as they were for orbital angular momentum. The ms = −1/2 state is called

the “spin-down” state and has a z-component of spin, sz = −1/2 ; the ms = + 1/2 state is called the “spin-up” state and

has a z-component of spin, sz = + 1/2. These states are shown in Figure 8.13.
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Figure 8.13 The two possible states of electron spin.

The intrinsic magnetic dipole moment of an electron µe can also be expressed in terms of the spin quantum number. In

analogy to the orbital angular momentum, the magnitude of the electron magnetic moment is

(8.30)µs = ⎛
⎝

e
2me

⎞
⎠S.

According to the special theory of relativity, this value is low by a factor of 2. Thus, in vector form, the spin magnetic
moment is

(8.31)µ→ = ⎛
⎝

e
me

⎞
⎠ S

→
.

The z-component of the magnetic moment is

(8.32)µz = −⎛
⎝

e
me

⎞
⎠Sz = −⎛

⎝
e

me
⎞
⎠ms ℏ.

The spin projection quantum number has just two values ⎛
⎝ms = ± 1/2⎞

⎠, so the z-component of the magnetic moment also

has just two values:

(8.33)µz = ± ⎛
⎝

e
2me

⎞
⎠ = ± µB ℏ,

where µB is one Bohr magneton. An electron is magnetic, so we expect the electron to interact with other magnetic fields.

We consider two special cases: the interaction of a free electron with an external (nonuniform) magnetic field, and an
electron in a hydrogen atom with a magnetic field produced by the orbital angular momentum of the electron.

Example 8.4

Electron Spin and Radiation

A hydrogen atom in the ground state is placed in an external uniform magnetic field ( B = 1.5 T ). Determine the

frequency of radiation produced in a transition between the spin-up and spin-down states of the electron.
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Strategy

The spin projection quantum number is ms = ± 1/2 , so the z-component of the magnetic moment is

µz = ± ⎛
⎝

e
2me

⎞
⎠ = ± µB ℏ.

The potential energy associated with the interaction between the electron magnetic moment and the external
magnetic field is

U = −µz B = ∓ µB B.

The frequency of light emitted is proportional to the energy ( ΔE ) difference between these two states.

Solution

The energy difference between these states is ΔE = 2µB B , so the frequency of radiation produced is

f = ΔE
h = 2µB B

h =
2⎛
⎝5.79 × 10−5 eV

T
⎞
⎠(1.5T)

4.136 × 10−15 eV · s
= 4.2 × 1010 cycles

s .

Significance

The electron magnetic moment couples with the external magnetic field. The energy of this system is different
whether the electron is aligned or not with the proton. The frequency of radiation produced by a transition
between these states is proportional to the energy difference. If we double the strength of the magnetic field,
holding all other things constant, the frequency of the radiation doubles and its wavelength is cut in half.

In a hydrogen atom, the electron magnetic moment can interact with the magnetic field produced by the orbital angular

momentum of the electron, a phenomenon called spin-orbit coupling. The orbital angular momentum ( L→ ), orbital

magnetic moment ( µ→ ), spin angular momentum ( S→ ), and spin magnetic moment ( µ→ s ) vectors are shown together

in Figure 8.14.

Just as the energy levels of a hydrogen atom can be split by an external magnetic field, so too are the energy levels of a
hydrogen atom split by internal magnetic fields of the atom. If the magnetic moment of the electron and orbital magnetic
moment of the electron are antiparallel, the potential energy from the magnetic interaction is relatively high, but when these
moments are parallel, the potential energy is relatively small. Transition from each of these two states to a lower-energy
level results in the emission of a photon of slightly different frequency. That is, the spin-orbit coupling “splits” the spectral
line expected from a spin-less electron. The fine structure of the hydrogen spectrum is explained by spin-orbit coupling.

Figure 8.14 Spin-orbit coupling is the interaction of an

electron’s spin magnetic moment µ→ s with its orbital

magnetic moment µ→ l .

The Stern-Gerlach experiment provides experimental evidence that electrons have spin angular momentum. The experiment
passes a stream of silver (Ag) atoms through an external, nonuniform magnetic field. The Ag atom has an orbital angular
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8.2

momentum of zero and contains a single unpaired electron in the outer shell. Therefore, the total angular momentum of the
Ag atom is due entirely to the spin of the outer electron ( s = 1/2) . Due to electron spin, the Ag atoms act as tiny magnets

as they pass through the magnetic field. These “magnets” have two possible orientations, which correspond to the spin-up
and -down states of the electron. The magnetic field diverts the spin up atoms in one direction and the spin-down atoms in
another direction. This produces two distinct bands on a screen (Figure 8.15).

Figure 8.15 In the Stern-Gerlach experiment, an external, nonuniform
magnetic field diverts a beam of electrons in two different directions. This
result is due to the quantization of spin angular momentum.

According to classical predictions, the angular momentum (and, therefore, the magnetic moment) of the Ag atom can point
in any direction, so one expects, instead, a continuous smudge on the screen. The resulting two bands of the Stern-Gerlach
experiment provide startling support for the ideas of quantum mechanics.

Visit PhET Explorations: Stern-Gerlach Experiment (https://openstaxcollege.org/l/21sterngerlach)
to learn more about the Stern-Gerlach experiment.

Check Your Understanding If the Stern-Gerlach experiment yielded four distinct bands instead of two,
what might be concluded about the spin quantum number of the charged particle?

Just like an electron, a proton is spin 1/2 and has a magnetic moment. (According to nuclear theory, this moment is due
to the orbital motion of quarks within the proton.) The hyperfine structure of the hydrogen spectrum is explained by the
interaction between the magnetic moment of the proton and the magnetic moment of the electron, an interaction known
as spin-spin coupling. The energy of the electron-proton system is different depending on whether or not the moments are
aligned. Transitions between these states ( spin-flip transitions) result in the emission of a photon with a wavelength of
λ ≈ 21 cm (in the radio range). The 21-cm line in atomic spectroscopy is a “fingerprint” of hydrogen gas. Astronomers

exploit this spectral line to map the spiral arms of galaxies, which are composed mostly of hydrogen (Figure 8.16).

Chapter 8 | Atomic Structure 373

https://openstaxcollege.org/l/21sterngerlach


Figure 8.16 The magnetic interaction between the electron and proton in the hydrogen atom is used to
map the spiral arms of the Pinwheel Galaxy (NGC 5457). (a) The galaxy seen in visible light; (b) the
galaxy seen in 21-cm hydrogen radiation; (c) the composite image of (a) and (b). Notice how the
hydrogen emission penetrates dust in the galaxy to show the spiral arms very clearly, whereas the galactic
nucleus shows up better in visible light (credit a: modification of work by ESA & NASA; credit b:
modification of work by Fabian Walter).

A complete specification of the state of an electron in a hydrogen atom requires five quantum numbers: n, l, m, s, and ms .

The names, symbols, and allowed values of these quantum numbers are summarized in Table 8.4.

Name Symbol Allowed values

Principal quantum number n 1, 2, 3, …

Angular momentum l 0, 1, 2, … n – 1

Angular momentum projection m 0, ± 1, ± 2,... ± l

Spin s 1/2 (electrons)

Spin projection ms −½, + ½

Table 8.4 Summary of Quantum Numbers of an Electron in a
Hydrogen Atom

Note that the intrinsic quantum numbers introduced in this section (s and ms) are valid for many particles, not just electrons.
For example, quarks within an atomic nucleus are also spin-half particles. As we will see later, quantum numbers help to
classify subatomic particles and enter into scientific models that attempt to explain how the universe works.

8.4 | The Exclusion Principle and the Periodic Table

Learning Objectives

By the end of this section, you will be able to:

• Explain the importance of Pauli’s exclusion principle to an understanding of atomic structure
and molecular bonding

• Explain the structure of the periodic table in terms of the total energy, orbital angular
momentum, and spin of individual electrons in an atom

• Describe the electron configuration of atoms in the periodic table

So far, we have studied only hydrogen, the simplest chemical element. We have found that an electron in the hydrogen atom
can be completely specified by five quantum numbers:
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(8.34)n : principal quantum number
l : angular momentum quantum number
m : angular momentum projection quantum number
s : spin quantum number
ms : spin projection quantum number

To construct the ground state of a neutral multi-electron atom, imagine starting with a nucleus of charge Ze (that is, a
nucleus of atomic number Z) and then adding Z electrons one by one. Assume that each electron moves in a spherically
symmetrical electric field produced by the nucleus and all other electrons of the atom. The assumption is valid because
the electrons are distributed randomly around the nucleus and produce an average electric field (and potential) that is
spherically symmetrical. The electric potential U(r) for each electron does not follow the simple −1/r form because of

interactions between electrons, but it turns out that we can still label each individual electron state by quantum numbers,
(n, l, m, s, ms) . (The spin quantum number s is the same for all electrons, so it will not be used in this section.)

The structure and chemical properties of atoms are explained in part by Pauli’s exclusion principle: No two electrons in
an atom can have the same values for all four quantum numbers (n, l, m, ms). This principle is related to two properties

of electrons: All electrons are identical (“when you’ve seen one electron, you’ve seen them all”) and they have half-integral
spin (s = 1/2). Sample sets of quantum numbers for the electrons in an atom are given in Table 8.5. Consistent with

Pauli’s exclusion principle, no two rows of the table have the exact same set of quantum numbers.

n l m ms Subshell
symbol

No. of electrons:
subshell

No. of electrons:
shell

1 0 0 ½

1 0 0 –½
1s 2 2

2 0 0 ½

2 0 0 –½
2s 2

2 1 –1 ½

2 1 –1 –½

2 1 0 ½

2 1 0 –½

2 1 1 ½

2 1 1 –½

2p 6

8

3 0 0 ½

3 0 0 –½
3s 2

3 1 –1 ½

3 1 –1 –½

3 1 0 ½

3 1 0 –½

3 1 1 ½

3 1 1 –½

3p 6

3 2 –2 ½

3 2 –2 –½

3 2 –1 ½

3d 10

18

Table 8.5 Electron States of Atoms Because of Pauli’s exclusion principle, no two electrons in an atom have
the same set of four quantum numbers.
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n l m ms Subshell
symbol

No. of electrons:
subshell

No. of electrons:
shell

3 2 –1 –½

3 2 0 ½

3 2 0 –½

3 2 1 ½

3 2 1 –½

3 2 2 ½

3 2 2 –½

Table 8.5 Electron States of Atoms Because of Pauli’s exclusion principle, no two electrons in an atom have
the same set of four quantum numbers.

Electrons with the same principal quantum number n are said to be in the same shell, and those that have the same value
of l are said to occupy the same subshell. An electron in the n = 1 state of a hydrogen atom is denoted 1s, where the first

digit indicates the shell (n = 1) and the letter indicates the subshell (s, p, d, f … correspond to l = 0, 1, 2, 3…). Two

electrons in the n = 1 state are denoted as 1s2, where the superscript indicates the number of electrons. An electron

in the n = 2 state with l = 1 is denoted 2p. The combination of two electrons in the n = 2 and l = 0 state, and three

electrons in the n = 2 and l = 1 state is written as 2s2 2p3, and so on. This representation of the electron state is called

the electron configuration of the atom. The electron configurations for several atoms are given in Table 8.6. Electrons in
the outer shell of an atom are called valence electrons. Chemical bonding between atoms in a molecule are explained by
the transfer and sharing of valence electrons.

Element Electron Configuration Spin Alignment

H 1s1 (↑)

He 1s2 (↑ ↓ )

Li 1s2 2s1 (↑)

Be 1s2 2s2 (↑ ↓ )

B 1s2 2s2 2p1 (↑ ↓ )(↑)

C 1s2 2s2 2p2 (↑ ↓ )(↑)(↑)

N 1s2 2s2 2p3 (↑ ↓ )(↑)(↑)(↑)

O 1s2 2s2 2p4 (↑ ↓ )(↑ ↓ )(↑)(↑)

F 1s2 2s2 2p5 (↑ ↓ )(↑ ↓ )(↑ ↓ )(↑)

Ne 1s2 2s2 2p6 (↑ ↓ )(↑ ↓ )(↑ ↓ )(↑ ↓ )

Na 1s2 2s2 2p6 3s1 (↑)

Table 8.6 Electron Configurations of Electrons in an Atom The
symbol (↑) indicates an unpaired electron in the outer shell, whereas

the symbol (↑ ↓ ) indicates a pair of spin-up and -down electrons in an

outer shell.
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Element Electron Configuration Spin Alignment

Mg 1s2 2s2 2p6 3s2 (↑ ↓ )

Al 1s2 2s2 2p6 3s2 3p1 (↑ ↓ )(↑)

Table 8.6 Electron Configurations of Electrons in an Atom The
symbol (↑) indicates an unpaired electron in the outer shell, whereas

the symbol (↑ ↓ ) indicates a pair of spin-up and -down electrons in an

outer shell.

The maximum number of electrons in a subshell depends on the value of the angular momentum quantum number, l. For
a given a value l, there are 2l + 1 orbital angular momentum states. However, each of these states can be filled by two

electrons (spin up and down, ↑ ↓ ). Thus, the maximum number of electrons in a subshell is

(8.35)N = 2(2l + 1) = 4l + 2.

In the 2s (l = 0) subshell, the maximum number of electrons is 2. In the 2p ( l = 1 ) subshell, the maximum number of

electrons is 6. Therefore, the total maximum number of electrons in the n = 2 shell (including both the l = 0 and 1

subshells) is 2 + 6 or 8. In general, the maximum number of electrons in the nth shell is 2n2.

Example 8.5

Subshells and Totals for n = 3

How many subshells are in the n = 3 shell? Identify each subshell and calculate the maximum number of

electrons that will fill each. Show that the maximum number of electrons that fill an atom is 2n2 .

Strategy

Subshells are determined by the value of l; thus, we first determine which values of l are allowed, and then we
apply the equation “maximum number of electrons that can be in a subshell = 2(2l + 1) ” to find the number of

electrons in each subshell.

Solution

Because n = 3, we know that l can be 0, 1, or 2; thus, there are three possible subshells. In standard notation,

they are labeled the 3s, 3p, and 3d subshells. We have already seen that two electrons can be in an s state, and six
in a p state, but let us use the equation “maximum number of electrons that can be in a subshell = 2(2l + 1) ” to

calculate the maximum number in each:

3s has l = 0; thus, 2⎛
⎝2l + 1⎞

⎠ = 2(0 + 1) = 2
3p has l = 1; thus, 2⎛

⎝2l + 1) = 2(2 + 1) = 6
3d has l = 2; thus, 2(2l + 1) = 2(4 + 1) = 10
Total = 18
⎛
⎝in the n = 3 shell).

The equation “maximum number of electrons that can be in a shell = 2n2 ” gives the maximum number in the

n = 3 shell to be

Maximum number of electrons = 2n2 = 2(3)2 = 2(9) = 18.
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Significance

The total number of electrons in the three possible subshells is thus the same as the formula 2n2 . In standard

(spectroscopic) notation, a filled n = 3 shell is denoted as 3s2 3p6 3d10 . Shells do not fill in a simple manner.

Before the n = 3 shell is completely filled, for example, we begin to find electrons in the n = 4 shell.

The structure of the periodic table (Figure 8.17) can be understood in terms of shells and subshells, and, ultimately, the
total energy, orbital angular momentum, and spin of the electrons in the atom. A detailed discussion of the periodic table
is left to a chemistry course—we sketch only its basic features here. In this discussion, we assume that the atoms are
electrically neutral; that is, they have the same number of electrons and protons. (Recall that the total number of protons in
an atomic nucleus is called the atomic number, Z.)

First, the periodic table is arranged into columns and rows. The table is read left to right and top to bottom in the order of
increasing atomic number Z. Atoms that belong to the same column or chemical group share many of the same chemical
properties. For example, the Li and Na atoms (in the first column) bond to other atoms in a similar way. The first row of the
table corresponds to the 1s ( l = 0 ) shell of an atom.

Consider the hypothetical procedure of adding electrons, one by one, to an atom. For hydrogen (H) (upper left), the 1s shell
is filled with either a spin up or down electron ( ↑or↓ ). This lone electron is easily shared with other atoms, so hydrogen is

chemically active. For helium (He) (upper right), the 1s shell is filled with both a spin up and a spin down ( ↑ ↓ ) electron.

This “fills” the 1s shell, so a helium atom tends not to share electrons with other atoms. The helium atom is said to be
chemically inactive, inert, or noble; likewise, helium gas is said to be an inert gas or noble gas.

Build an atom by adding and subtracting protons, neutrons, and electrons. How does the element, charge, and mass
change? Visit PhET Explorations: Build an Atom (https://openstaxcollege.org/l/21buildanatom) to
explore the answers to these questions.
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Figure 8.17 The periodic table of elements, showing the structure of shells and subshells.

The second row corresponds to the 2s and 2p subshells. For lithium (Li) (upper left), the 1s shell is filled with a spin-up
and spin-down electron ( ↑ ↓ ) and the 2s shell is filled with either a spin-up or -down electron ( ↑or↓ ). Its electron

configuration is therefore 1s2 2s1 or [He]2s, where [He] indicates a helium core. Like hydrogen, the lone electron in the

outermost shell is easily shared with other atoms. For beryllium (Be), the 2s shell is filled with a spin-up and -down electron

( ↑ ↓ ), and has the electron configuration [He] 2s2 .

Next, we look at the right side of the table. For boron (B), the 1s and 2s shells are filled and the 2p ( l = 1 ) shell contains

either a spin up or down electron ( ↑or↓ ). From carbon (C) to neon (N), we the fill the 2p shell. The maximum number

of electrons in the 2p shells is 4l + 2 = 4(2) + 2 = 6 . For neon (Ne), the 1s shell is filled with a spin-up and spin-down

electron ( ↑ ↓ ), and the 2p shell is filled with six electrons ( ↑ ↓ ↑ ↓ ↑ ↓ ) . This “fills” the 1s, 2s, and 2p subshells, so like

helium, the neon atom tends not to share electrons with other atoms.

The process of electron filling repeats in the third row. However, beginning in the fourth row, the pattern is broken. The
actual order of order of electron filling is given by

1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s,...

Notice that the 3d, 4d, 4f, and 5d subshells (in bold) are filled out of order; this occurs because of interactions between
electrons in the atom, which so far we have neglected. The transition metals are elements in the gap between the first
two columns and the last six columns that contain electrons that fill the d ( l = 1 ) subshell. As expected, these atoms

are arranged in 4l + 2 = 4(2) + 2 = 10 columns. The structure of the periodic table can be understood in terms of the

quantization of the total energy (n), orbital angular momentum (l), and spin (s). The first two columns correspond to
the s (l = 0 ) subshell, the next six columns correspond to the p ( l = 1 ) subshell, and the gap between these columns
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corresponds to the d ( l = 2 ) subshell.

The periodic table also gives information on molecular bonding. To see this, consider atoms in the left-most column (the
so-called alkali metals including: Li, Na, and K). These atoms contain a single electron in the 2s subshell, which is easily
donated to other atoms. In contrast, atoms in the second-to-right column (the halogens: for example, Cl, F, and Br) are
relatively stingy in sharing electrons. These atoms would much rather accept an electron, because they are just one electron
shy of a filled shell (“of being noble”).

Therefore, if a Na atom is placed in close proximity to a Cl atom, the Na atom freely donates its 2s electron and the Cl
atom eagerly accepts it. In the process, the Na atom (originally a neutral charge) becomes positively charged and the Cl

(originally a neutral charge) becomes negatively charged. Charged atoms are called ions. In this case, the ions are Na+

and Cl− , where the superscript indicates charge of the ion. The electric (Coulomb) attraction between these atoms forms a

NaCl (salt) molecule. A chemical bond between two ions is called an ionic bond. There are many kinds of chemical bonds.
For example, in an oxygen molecule O2 electrons are equally shared between the atoms. The bonding of oxygen atoms is

an example of a covalent bond.

8.5 | Atomic Spectra and X-rays

Learning Objectives

By the end of this section, you will be able to:

• Describe the absorption and emission of radiation in terms of atomic energy levels and energy
differences

• Use quantum numbers to estimate the energy, frequency, and wavelength of photons produced
by atomic transitions in multi-electron atoms

• Explain radiation concepts in the context of atomic fluorescence and X-rays

The study of atomic spectra provides most of our knowledge about atoms. In modern science, atomic spectra are used to
identify species of atoms in a range of objects, from distant galaxies to blood samples at a crime scene.

The theoretical basis of atomic spectroscopy is the transition of electrons between energy levels in atoms. For example,
if an electron in a hydrogen atom makes a transition from the n = 3 to the n = 2 shell, the atom emits a photon with a

wavelength

(8.36)λ = c
f = h · c

h · f = hc
ΔE = hc

E3 − E2
,

where ΔE = E3 − E2 is energy carried away by the photon and hc = 1940 eV · nm . After this radiation passes through

a spectrometer, it appears as a sharp spectral line on a screen. The Bohr model of this process is shown in Figure 8.18. If
the electron later absorbs a photon with energy ΔE , the electron returns to the n = 3 shell. (We examined the Bohr model

earlier, in Photons and Matter Waves.)
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Figure 8.18 An electron transition from the n = 3 to the n = 2 shell

of a hydrogen atom.

To understand atomic transitions in multi-electron atoms, it is necessary to consider many effects, including the Coulomb
repulsion between electrons and internal magnetic interactions (spin-orbit and spin-spin couplings). Fortunately, many
properties of these systems can be understood by neglecting interactions between electrons and representing each electron
by its own single-particle wave function ψnlm .

Atomic transitions must obey selection rules. These rules follow from principles of quantum mechanics and symmetry.
Selection rules classify transitions as either allowed or forbidden. (Forbidden transitions do occur, but the probability of
the typical forbidden transition is very small.) For a hydrogen-like atom, atomic transitions that involve electromagnetic
interactions (the emission and absorption of photons) obey the following selection rule:

(8.37)Δl = ± 1,

where l is associated with the magnitude of orbital angular momentum,

(8.38)L = l(l + 1)ℏ.

For multi-electron atoms, similar rules apply. To illustrate this rule, consider the observed atomic transitions in hydrogen
(H), sodium (Na), and mercury (Hg) (Figure 8.19). The horizontal lines in this diagram correspond to atomic energy
levels, and the transitions allowed by this selection rule are shown by lines drawn between these levels. The energies of
these states are on the order of a few electron volts, and photons emitted in transitions are in the visible range. Technically,
atomic transitions can violate the selection rule, but such transitions are uncommon.
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Figure 8.19 Energy-level diagrams for (a) hydrogen, (b) sodium, and (c) mercury. For comparison, hydrogen
energy levels are shown in the sodium diagram.

The hydrogen atom has the simplest energy-level diagram. If we neglect electron spin, all states with the same value of n
have the same total energy. However, spin-orbit coupling splits the n = 2 states into two angular momentum states (s and

p) of slightly different energies. (These levels are not vertically displaced, because the energy splitting is too small to show
up in this diagram.) Likewise, spin-orbit coupling splits the n = 3 states into three angular momentum states (s, p, and d).
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The energy-level diagram for hydrogen is similar to sodium, because both atoms have one electron in the outer shell. The
valence electron of sodium moves in the electric field of a nucleus shielded by electrons in the inner shells, so it does not
experience a simple 1/r Coulomb potential and its total energy depends on both n and l. Interestingly, mercury has two
separate energy-level diagrams; these diagrams correspond to two net spin states of its 6s (valence) electrons.

Example 8.6

The Sodium Doublet

The spectrum of sodium is analyzed with a spectrometer. Two closely spaced lines with wavelengths 589.00 nm
and 589.59 nm are observed. (a) If the doublet corresponds to the excited (valence) electron that transitions from
some excited state down to the 3s state, what was the original electron angular momentum? (b) What is the energy
difference between these two excited states?

Strategy

Sodium and hydrogen belong to the same column or chemical group of the periodic table, so sodium is
“hydrogen-like.” The outermost electron in sodium is in the 3s ( l = 0 ) subshell and can be excited to higher

energy levels. As for hydrogen, subsequent transitions to lower energy levels must obey the selection rule:

Δl = ± 1.

We must first determine the quantum number of the initial state that satisfies the selection rule. Then, we can use
this number to determine the magnitude of orbital angular momentum of the initial state.

Solution
a. Allowed transitions must obey the selection rule. If the quantum number of the initial state is l = 0 , the

transition is forbidden because Δl = 0 . If the quantum number of the initial state is l = 2, 3, 4 ,…the

transition is forbidden because Δl > 1. Therefore, the quantum of the initial state must be l = 1 . The

orbital angular momentum of the initial state is

L = l(l + 1)ℏ = 1.41ℏ.
b. Because the final state for both transitions is the same (3s), the difference in energies of the photons is

equal to the difference in energies of the two excited states. Using the equation

ΔE = h f = h⎛
⎝
c
λ

⎞
⎠,

we have

ΔE = hc⎛
⎝

1
λ1

− 1
λ2

⎞
⎠

= ⎛
⎝4.14 × 10−15 eVs⎞

⎠
⎛
⎝3.00 × 108 m/s⎞

⎠ × ⎛
⎝

1
589.00 × 10−9 m

− 1
589.59 × 10−9 m

⎞
⎠

= 2.11 × 10−3 eV.

Significance

To understand the difficulty of measuring this energy difference, we compare this difference with the average
energy of the two photons emitted in the transition. Given an average wavelength of 589.30 nm, the average
energy of the photons is

E = hc
λ = (4.14 × 10−15 eVs)(3.00 × 108 m/s)

589.30 × 10−9 m
= 2.11 eV.

The energy difference ΔE is about 0.1% (1 part in 1000) of this average energy. However, a sensitive

spectrometer can measure the difference.

Atomic Fluorescence
Fluorescence occurs when an electron in an atom is excited several steps above the ground state by the absorption of a
high-energy ultraviolet (UV) photon. Once excited, the electron “de-excites” in two ways. The electron can drop back to
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the ground state, emitting a photon of the same energy that excited it, or it can drop in a series of smaller steps, emitting
several low-energy photons. Some of these photons may be in the visible range. Fluorescent dye in clothes can make colors
seem brighter in sunlight by converting UV radiation into visible light. Fluorescent lights are more efficient in converting
electrical energy into visible light than incandescent filaments (about four times as efficient). Figure 8.20 shows a scorpion
illuminated by a UV lamp. Proteins near the surface of the skin emit a characteristic blue light.

Figure 8.20 A scorpion glows blue under a UV lamp. (credit: Ken Bosma)

X-rays
The study of atomic energy transitions enables us to understand X-rays and X-ray technology. Like all electromagnetic
radiation, X-rays are made of photons. X-ray photons are produced when electrons in the outermost shells of an atom drop
to the inner shells. (Hydrogen atoms do not emit X-rays, because the electron energy levels are too closely spaced together
to permit the emission of high-frequency radiation.) Transitions of this kind are normally forbidden because the lower states
are already filled. However, if an inner shell has a vacancy (an inner electron is missing, perhaps from being knocked away
by a high-speed electron), an electron from one of the outer shells can drop in energy to fill the vacancy. The energy gap for
such a transition is relatively large, so wavelength of the radiated X-ray photon is relatively short.

X-rays can also be produced by bombarding a metal target with high-energy electrons, as shown in Figure 8.21. In the
figure, electrons are boiled off a filament and accelerated by an electric field into a tungsten target. According to the
classical theory of electromagnetism, any charged particle that accelerates emits radiation. Thus, when the electron strikes
the tungsten target, and suddenly slows down, the electron emits braking radiation. (Braking radiation refers to radiation
produced by any charged particle that is slowed by a medium.) In this case, braking radiation contains a continuous range
of frequencies, because the electrons will collide with the target atoms in slightly different ways.

Braking radiation is not the only type of radiation produced in this interaction. In some cases, an electron collides with
another inner-shell electron of a target atom, and knocks the electron out of the atom—billiard ball style. The empty state is
filled when an electron in a higher shell drops into the state (drop in energy level) and emits an X-ray photon.
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Figure 8.21 A sketch of an X-ray tube. X-rays are emitted from
the tungsten target.

Historically, X-ray spectral lines were labeled with letters (K, L, M, N, …). These letters correspond to the atomic shells (
n = 1, 2, 3, 4, … ). X-rays produced by a transition from any higher shell to the K ( n = 1 ) shell are labeled as K X-rays.

X-rays produced in a transition from the L ( n = 2 ) shell are called Kα X-rays; X-rays produced in a transition from the

M ( n = 3 ) shell are called Kβ X-rays; X-rays produced in a transition from the N ( n = 4 ) shell are called Kγ X-rays;

and so forth. Transitions from higher shells to L and M shells are labeled similarly. These transitions are represented by an
energy-level diagram in Figure 8.22.

Figure 8.22 X-ray transitions in an atom.

The distribution of X-ray wavelengths produced by striking metal with a beam of electrons is given in Figure 8.23. X-ray
transitions in the target metal appear as peaks on top of the braking radiation curve. Photon frequencies corresponding to the
spikes in the X-ray distribution are called characteristic frequencies, because they can be used to identify the target metal.
The sharp cutoff wavelength (just below the Kγ peak) corresponds to an electron that loses all of its energy to a single

photon. Radiation of shorter wavelengths is forbidden by the conservation of energy.
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Figure 8.23 X-ray spectrum from a silver target. The peaks correspond to characteristic
frequencies of X-rays emitted by silver when struck by an electron beam.

Example 8.7

X-Rays from Aluminum

Estimate the characteristic energy and frequency of the Kα X-ray for aluminum ( Z = 13 ).

Strategy

A Kα X-ray is produced by the transition of an electron in the L ( n = 2 ) shell to the K ( n = 1 ) shell. An

electron in the L shell “sees” a charge Z = 13 − 1 = 12, because one electron in the K shell shields the nuclear

charge. (Recall, two electrons are not in the K shell because the other electron state is vacant.) The frequency of
the emitted photon can be estimated from the energy difference between the L and K shells.

Solution

The energy difference between the L and K shells in a hydrogen atom is 10.2 eV. Assuming that other electrons
in the L shell or in higher-energy shells do not shield the nuclear charge, the energy difference between the L and
K shells in an atom with Z = 13 is approximately

(8.39)ΔEL → K ≈ (Z − 1)2 (10.2 eV) = (13 − 1)2 (10.2 eV) = 1.47 × 103 eV.

Based on the relationship f = ⎛
⎝ΔEL → K

⎞
⎠ /h , the frequency of the X-ray is

f = 1.47 × 103 eV
4.14 × 10−15 eV · s

= 3.55 × 1017 Hz.

Significance

The wavelength of the typical X-ray is 0.1–10 nm. In this case, the wavelength is:

λ = c
f = 3.0 × 108 m/s

3.55 × 1017 Hz
= 8.5 × 10−10 = 0.85 nm.

Hence, the transition L → K in aluminum produces X-ray radiation.

X-ray production provides an important test of quantum mechanics. According to the Bohr model, the energy of a Kα X-ray

depends on the nuclear charge or atomic number, Z. If Z is large, Coulomb forces in the atom are large, energy differences
( ΔE ) are large, and, therefore, the energy of radiated photons is large. To illustrate, consider a single electron in a multi-

electron atom. Neglecting interactions between the electrons, the allowed energy levels are

(8.40)
En = − Z 2 (13.6 eV)

n2 ,
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8.3

where n = 1, 2, …and Z is the atomic number of the nucleus. However, an electron in the L ( n = 2 ) shell “sees” a charge

Z − 1 , because one electron in the K shell shields the nuclear charge. (Recall that there is only one electron in the K shell

because the other electron was “knocked out.”) Therefore, the approximate energies of the electron in the L and K shells are

EL ≈ −(Z − 1)2 (13.6 eV)
22

EK ≈ −(Z − 1)2 (13.6 eV)
12 .

The energy carried away by a photon in a transition from the L shell to the K shell is therefore

ΔEL → K = (Z − 1)2(13.6 eV)⎛⎝
1
12 − 1

22
⎞
⎠

= (Z − 1)2(10.2 eV),

where Z is the atomic number. In general, the X-ray photon energy for a transition from an outer shell to the K shell is

ΔEL → K = h f = constant × (Z − 1)2,

or

(8.41)(Z − 1) = constant f ,

where f is the frequency of a Kα X-ray. This equation is Moseley’s law. For large values of Z, we have approximately

Z ≈ constant f .

This prediction can be checked by measuring f for a variety of metal targets. This model is supported if a plot of Z versus
f data (called a Moseley plot) is linear. Comparison of model predictions and experimental results, for both the K and L

series, is shown in Figure 8.24. The data support the model that X-rays are produced when an outer shell electron drops in
energy to fill a vacancy in an inner shell.

Check Your Understanding X-rays are produced by bombarding a metal target with high-energy
electrons. If the target is replaced by another with two times the atomic number, what happens to the frequency
of X-rays?
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Figure 8.24 A Moseley plot. These data were adapted from
Moseley’s original data (H. G. J. Moseley, Philos. Mag. (6)
77:703, 1914).

Example 8.8

Characteristic X-Ray Energy

Calculate the approximate energy of a Kα X-ray from a tungsten anode in an X-ray tube.

Strategy

Two electrons occupy a filled K shell. A vacancy in this shell would leave one electron, so the effective charge
for an electron in the L shell would be Z − 1 rather than Z. For tungsten, Z = 74, so the effective charge is 73.

This number can be used to calculate the energy-level difference between the L and K shells, and, therefore, the
energy carried away by a photon in the transition L → K.

Solution

The effective Z is 73, so the Kα X-ray energy is given by

EKα = ΔE = Ei − Ef = E2 − E1,

where

E1 = − Z 2

12 E0 = − 732

1 (13.6 eV) = −72.5 keV
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and

E2 = − Z 2

22 E0 = − 732

4 (13.6 eV) = −18.1 keV.

Thus,

EKα = −18.1 keV − (−72.5 keV) = 54.4 keV.

Significance

This large photon energy is typical of X-rays. X-ray energies become progressively larger for heavier elements

because their energy increases approximately as Z 2 . An acceleration voltage of more than 50,000 volts is needed

to “knock out” an inner electron from a tungsten atom.

X-ray Technology
X-rays have many applications, such as in medical diagnostics (Figure 8.25), inspection of luggage at airports (Figure
8.26), and even detection of cracks in crucial aircraft components. The most common X-ray images are due to shadows.
Because X-ray photons have high energy, they penetrate materials that are opaque to visible light. The more energy an X-
ray photon has, the more material it penetrates. The depth of penetration is related to the density of the material, as well
as to the energy of the photon. The denser the material, the fewer X-ray photons get through and the darker the shadow.
X-rays are effective at identifying bone breaks and tumors; however, overexposure to X-rays can damage cells in biological
organisms.

Figure 8.25 (a) An X-ray image of a person’s teeth. (b) A typical X-ray machine in a dentist’s office produces
relatively low-energy radiation to minimize patient exposure. (credit a: modification of work by “Dmitry
G”/Wikimedia Commons)
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Figure 8.26 An X-ray image of a piece of luggage. The
denser the material, the darker the shadow. Object colors relate
to material composition—metallic objects show up as blue in
this image. (credit: “IDuke”/Wikimedia Commons)

A standard X-ray image provides a two-dimensional view of the object. However, in medical applications, this view does
not often provide enough information to draw firm conclusions. For example, in a two-dimensional X-ray image of the
body, bones can easily hide soft tissues or organs. The CAT (computed axial tomography) scanner addresses this problem
by collecting numerous X-ray images in “slices” throughout the body. Complex computer-image processing of the relative
absorption of the X-rays, in different directions, can produce a highly detailed three-dimensional X-ray image of the body.

X-rays can also be used to probe the structures of atoms and molecules. Consider X-rays incident on the surface of a
crystalline solid. Some X-ray photons reflect at the surface, and others reflect off the “plane” of atoms just below the
surface. Interference between these photons, for different angles of incidence, produces a beautiful image on a screen
(Figure 8.27). The interaction of X-rays with a solid is called X-ray diffraction. The most famous example using X-ray
diffraction is the discovery of the double-helix structure of DNA.
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Figure 8.27 X-ray diffraction from the crystal of a protein (hen egg lysozyme) produced this
interference pattern. Analysis of the pattern yields information about the structure of the protein.
(credit: “Del45”/Wikimedia Commons)

8.6 | Lasers

Learning Objectives

By the end of this section, you will be able to:

• Describe the physical processes necessary to produce laser light

• Explain the difference between coherent and incoherent light

• Describe the application of lasers to a CD and Blu-Ray player

A laser is device that emits coherent and monochromatic light. The light is coherent if photons that compose the light are
in-phase, and monochromatic if the photons have a single frequency (color). When a gas in the laser absorbs radiation,
electrons are elevated to different energy levels. Most electrons return immediately to the ground state, but others linger in
what is called a metastable state. It is possible to place a majority of these atoms in a metastable state, a condition called a
population inversion.

When a photon of energy disturbs an electron in a metastable state (Figure 8.28), the electron drops to the lower-energy
level and emits an addition photon, and the two photons proceed off together. This process is called stimulated emission. It
occurs with relatively high probability when the energy of the incoming photon is equal to the energy difference between the
excited and “de-excited” energy levels of the electron ( ΔE = h f ). Hence, the incoming photon and the photon produced

by de-excitation have the same energy, hf. These photons encounter more electrons in the metastable state, and the process
repeats. The result is a cascade or chain reaction of similar de-excitations. Laser light is coherent because all light waves in
laser light share the same frequency (color) and the same phase (any two points of along a line perpendicular to the direction
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of motion are on the “same part” of the wave”). A schematic diagram of coherent and incoherent light wave pattern is given
in Figure 8.29.

Figure 8.28 The physics of a laser. An incident photon of frequency f causes a cascade of
photons of the same frequency.

Figure 8.29 A coherent light wave pattern contains light waves of the same
frequency and phase. An incoherent light wave pattern contains light waves of
different frequencies and phases.

Lasers are used in a wide range of applications, such as in communication (optical fiber phone lines), entertainment (laser
light shows), medicine (removing tumors and cauterizing vessels in the retina), and in retail sales (bar code readers). Lasers
can also be produced by a large range of materials, including solids (for example, the ruby crystal), gases (helium-gas
mixture), and liquids (organic dyes). Recently, a laser was even created using gelatin—an edible laser! Below we discuss
two practical applications in detail: CD players and Blu-Ray Players.

CD Player
A CD player reads digital information stored on a compact disc (CD). A CD is 6-inch diameter disc made of plastic that
contains small “bumps” and “pits” nears its surface to encode digital or binary data (Figure 8.30). The bumps and pits
appear along a very thin track that spirals outwards from the center of the disc. The width of the track is smaller than 1/20th
the width of a human hair, and the heights of the bumps are even smaller yet.
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Figure 8.30 A compact disc is a plastic disc that uses bumps near
its surface to encode digital information. The surface of the disc
contains multiple layers, including a layer of aluminum and one of
polycarbonate plastic.

A CD player uses a laser to read this digital information. Laser light is suited to this purpose, because coherent light can
be focused onto an incredibly small spot and therefore distinguish between bumps and pits in the CD. After processing
by player components (including a diffraction grating, polarizer, and collimator), laser light is focused by a lens onto the
CD surface. Light that strikes a bump (“land”) is merely reflected, but light that strikes a “pit” destructively interferes, so
no light returns (the details of this process are not important to this discussion). Reflected light is interpreted as a “1” and
unreflected light is interpreted as a “0.” The resulting digital signal is converted into an analog signal, and the analog signal
is fed into an amplifier that powers a device such as a pair of headphones. The laser system of a CD player is shown in
Figure 8.31.

Figure 8.31 A CD player and its laser component.

Blu-Ray Player
Like a CD player, a Blu-Ray player reads digital information (video or audio) stored on a disc, and a laser is used to record
this information. The pits on a Blu-Ray disc are much smaller and more closely packed together than for a CD, so much
more information can be stored. As a result, the resolving power of the laser must be greater. This is achieved using short
wavelength (λ = 405 nm) blue laser light—hence, the name “Blu-” Ray. (CDs and DVDs use red laser light.) The different

pit sizes and player-hardware configurations of a CD, DVD, and Blu-Ray player are shown in Figure 8.32. The pit sizes
of a Blu-Ray disk are more than twice as small as the pits on a DVD or CD. Unlike a CD, a Blu-Ray disc store data on
a polycarbonate layer, which places the data closer to the lens and avoids readability problems. A hard coating is used to
protect the data since it is so close to the surface.
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Figure 8.32 Comparison of laser resolution in a CD, DVD, and Blu-Ray Player.
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angular momentum orbital quantum number (l)

angular momentum projection quantum number (m)

atomic orbital

Bohr magneton

braking radiation

chemical group

coherent light

covalent bond

electron configuration

fine structure

fluorescence

hyperfine structure

ionic bond

laser

magnetic orbital quantum number

magnetogram

metastable state

monochromatic

Moseley plot

Moseley’s law

orbital magnetic dipole moment

Pauli’s exclusion principle

population inversion

principal quantum number (n)

radial probability density function

selection rules

spin projection quantum number ( ms )

spin quantum number (s)

spin-flip transitions

spin-orbit coupling

CHAPTER 8 REVIEW

KEY TERMS
quantum number associated with the orbital angular momentum

of an electron in a hydrogen atom

quantum number associated with the z-component of the
orbital angular momentum of an electron in a hydrogen atom

region in space that encloses a certain percentage (usually 90%) of the electron probability

magnetic moment of an electron, equal to 9.3 × 10−24 J/T or 5.8 × 10−5 eV/T

radiation produced by targeting metal with a high-energy electron beam (or radiation produced by the
acceleration of any charged particle in a material)

group of elements in the same column of the periodic table that possess similar chemical properties

light that consists of photons of the same frequency and phase

chemical bond formed by the sharing of electrons between two atoms

representation of the state of electrons in an atom, such as 1s2 2s1 for lithium

detailed structure of atomic spectra produced by spin-orbit coupling

radiation produced by the excitation and subsequent, gradual de-excitation of an electron in an atom

detailed structure of atomic spectra produced by spin-orbit coupling

chemical bond formed by the electric attraction between two oppositely charged ions

coherent light produced by a cascade of electron de-excitations

another term for the angular momentum projection quantum number

pictoral representation, or map, of the magnetic activity at the Sun’s surface

state in which an electron “lingers” in an excited state

light that consists of photons with the same frequency

plot of the atomic number versus the square root of X-ray frequency

relationship between the atomic number and X-ray photon frequency for X-ray production

measure of the strength of the magnetic field produced by the orbital angular
momentum of the electron

no two electrons in an atom can have the same values for all four quantum numbers
(n, l, m, ms)

condition in which a majority of atoms contain electrons in a metastable state

quantum number associated with the total energy of an electron in a hydrogen atom

function use to determine the probability of a electron to be found in a spatial
interval in r

rules that determine whether atomic transitions are allowed or forbidden (rare)

quantum number associated with the z-component of the spin angular
momentum of an electron

quantum number associated with the spin angular momentum of an electron

atomic transitions between states of an electron-proton system in which the magnetic moments are
aligned and not aligned

interaction between the electron magnetic moment and the magnetic field produced by the orbital
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stimulated emission

transition metal

valence electron

Zeeman effect

angular momentum of the electron

when a photon of energy triggers an electron in a metastable state to drop in energy emitting an
additional photon

element that is located in the gap between the first two columns and the last six columns of the table of
elements that contains electrons that fill the d subshell

electron in the outer shell of an atom that participates in chemical bonding

splitting of energy levels by an external magnetic field

KEY EQUATIONS
Orbital angular momentum L = l(l + 1)ℏ

z-component of orbital angular momentum Lz = mℏ

Radial probability density function P(r)dr = |ψn00 |24πr2 dr

Spin angular momentum S = s(s + 1)ℏ

z-component of spin angular momentum Sz = ms ℏ

Electron spin magnetic moment µ→ s = ⎛
⎝

e
me

⎞
⎠ S

→

Electron orbital magnetic dipole moment µ→ = −⎛
⎝

e
2me

⎞
⎠ L→

Potential energy associated with the magnetic
interaction between the orbital magnetic dipole

moment and an external magnetic field B→
U(θ) = −µz B = mµB B

Maximum number of electrons in a subshell of
a hydrogen atom

N = 4l + 2

Selection rule for atomic transitions in a
hydrogen-like atom

Δl = ± 1

Moseley’s law for X-ray production (Z − 1) = constant f

SUMMARY

8.1 The Hydrogen Atom

• A hydrogen atom can be described in terms of its wave function, probability density, total energy, and orbital angular
momentum.

• The state of an electron in a hydrogen atom is specified by its quantum numbers (n, l, m).

• In contrast to the Bohr model of the atom, the Schrödinger model makes predictions based on probability statements.

• The quantum numbers of a hydrogen atom can be used to calculate important information about the atom.

8.2 Orbital Magnetic Dipole Moment of the Electron

• A hydrogen atom has magnetic properties because the motion of the electron acts as a current loop.

• The energy levels of a hydrogen atom associated with orbital angular momentum are split by an external magnetic
field because the orbital angular magnetic moment interacts with the field.

• The quantum numbers of an electron in a hydrogen atom can be used to calculate the magnitude and direction of the
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orbital magnetic dipole moment of the atom.

8.3 Electron Spin

• The state of an electron in a hydrogen atom can be expressed in terms of five quantum numbers.

• The spin angular momentum quantum of an electron is = +½ . The spin angular momentum projection quantum

number is ms = + ½ or − ½ (spin up or spin down).

• The fine and hyperfine structures of the hydrogen spectrum are explained by magnetic interactions within the atom.

8.4 The Exclusion Principle and the Periodic Table

• Pauli’s exclusion principle states that no two electrons in an atom can have all the same quantum numbers.

• The structure of the periodic table of elements can be explained in terms of the total energy, orbital angular
momentum, and spin of electrons in an atom.

• The state of an atom can be expressed by its electron configuration, which describes the shells and subshells that are
filled in the atom.

8.5 Atomic Spectra and X-rays

• Radiation is absorbed and emitted by atomic energy-level transitions.

• Quantum numbers can be used to estimate the energy, frequency, and wavelength of photons produced by atomic
transitions.

• Atomic fluorescence occurs when an electron in an atom is excited several steps above the ground state by the
absorption of a high-energy ultraviolet (UV) photon.

• X-ray photons are produced when a vacancy in an inner shell of an atom is filled by an electron from the outer shell
of the atom.

• The frequency of X-ray radiation is related to the atomic number Z of an atom.

8.6 Lasers

• Laser light is coherent (monochromatic and “phase linked”) light.

• Laser light is produced by population inversion and subsequent de-excitation of electrons in a material (solid, liquid,
or gas).

• CD and Blu-Ray players uses lasers to read digital information stored on discs.

CONCEPTUAL QUESTIONS

8.1 The Hydrogen Atom

1. Identify the physical significance of each of the
quantum numbers of the hydrogen atom.

2. Describe the ground state of hydrogen in terms of wave
function, probability density, and atomic orbitals.

3. Distinguish between Bohr’s and Schrödinger’s model
of the hydrogen atom. In particular, compare the energy and
orbital angular momentum of the ground states.

8.2 Orbital Magnetic Dipole Moment of the

Electron

4. Explain why spectral lines of the hydrogen atom are

split by an external magnetic field. What determines the
number and spacing of these lines?

5. A hydrogen atom is placed in a magnetic field. Which
of the following quantities are affected? (a) total energy;
(b) angular momentum; (c) z-component of angular
momentum; (d) polar angle.

6. On what factors does the orbital magnetic dipole
moment of an electron depend?

8.3 Electron Spin

7. Explain how a hydrogen atom in the ground state
(l = 0 ) can interact magnetically with an external

magnetic field.
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8. Compare orbital angular momentum with spin angular
momentum of an electron in the hydrogen atom.

9. List all the possible values of s and ms for an electron.

Are there particles for which these values are different?

10. Are the angular momentum vectors L
→

and S
→

necessarily aligned?

11. What is spin-orbit coupling?

8.4 The Exclusion Principle and the Periodic

Table

12. What is Pauli’s exclusion principle? Explain the
importance of this principle for the understanding of atomic
structure and molecular bonding.

13. Compare the electron configurations of the elements
in the same column of the periodic table.

14. Compare the electron configurations of the elements
that belong in the same row of the periodic table of
elements.

8.5 Atomic Spectra and X-rays

15. Atomic and molecular spectra are discrete. What does
discrete mean, and how are discrete spectra related to the
quantization of energy and electron orbits in atoms and
molecules?

16. Discuss the process of the absorption of light by matter
in terms of the atomic structure of the absorbing medium.

17. NGC1763 is an emission nebula in the Large
Magellanic Cloud just outside our Milky Way Galaxy.
Ultraviolet light from hot stars ionize the hydrogen atoms
in the nebula. As protons and electrons recombine, light in
the visible range is emitted. Compare the energies of the
photons involved in these two transitions.

18. Why are X-rays emitted only for electron transitions to
inner shells? What type of photon is emitted for transitions
between outer shells?

19. How do the allowed orbits for electrons in atoms differ
from the allowed orbits for planets around the sun?

8.6 Lasers

20. Distinguish between coherent and monochromatic
light.

21. Why is a metastable state necessary for the production
of laser light?

22. How does light from an incandescent light bulb differ
from laser light?

23. How is a Blu-Ray player able to read more
information that a CD player?

24. What are the similarities and differences between a
CD player and a Blu-Ray player?

PROBLEMS

8.1 The Hydrogen Atom

25. The wave function is evaluated at rectangular
coordinates ( x, y, z ) = (2, 1, 1) in arbitrary units. What

are the spherical coordinates of this position?

26. If an atom has an electron in the n = 5 state with

m = 3 , what are the possible values of l?

27. What are the possible values of m for an electron in the
n = 4 state?

28. What, if any, constraints does a value of m = 1 place

on the other quantum numbers for an electron in an atom?

29. What are the possible values of m for an electron in the
n = 4 state?

30. (a) How many angles can L make with the z-axis for
an l = 2 electron? (b) Calculate the value of the smallest

angle.

31. The force on an electron is “negative the gradient
of the potential energy function.” Use this knowledge and
Equation 8.1 to show that the force on the electron in a
hydrogen atom is given by Coulomb’s force law.

32. What is the total number of states with orbital angular
momentum l = 0 ? (Ignore electron spin.)

33. The wave function is evaluated at spherical
coordinates (r, θ, ϕ) = ⎛

⎝ 3, 45°, 45°⎞
⎠, where the value

of the radial coordinate is given in arbitrary units. What are
the rectangular coordinates of this position?
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34. Coulomb’s force law states that the force between two
charged particles is:

F = kQq
r2 . Use this expression to determine the potential

energy function.

35. Write an expression for the total number of states with
orbital angular momentum l.

36. Consider hydrogen in the ground state, ψ100 . (a) Use

the derivative to determine the radial position for which the
probability density, P(r), is a maximum.

(b) Use the integral concept to determine the average radial
position. (This is called the expectation value of the
electron’s radial position.) Express your answers into terms
of the Bohr radius, ao . Hint: The expectation value is the

just average value. (c) Why are these values different?

37. What is the probability that the 1s electron of a
hydrogen atom is found outside the Bohr radius?

38. How many polar angles are possible for an electron in
the l = 5 state?

39. What is the maximum number of orbital angular
momentum electron states in the n = 2 shell of a hydrogen

atom? (Ignore electron spin.)

40. What is the maximum number of orbital angular
momentum electron states in the n = 3 shell of a hydrogen

atom? (Ignore electron spin.)

8.2 Orbital Magnetic Dipole Moment of the

Electron

41. Find the magnitude of the orbital magnetic dipole
moment of the electron in in the 3p state. (Express your
answer in terms of µB. )

42. A current of I = 2A flows through a square-shaped

wire with 2-cm side lengths. What is the magnetic moment
of the wire?

43. Estimate the ratio of the electron magnetic moment
to the muon magnetic moment for the same state of orbital

angular momentum. (Hint: mµ = 105.7 MeV/c2)

44. Find the magnitude of the orbital magnetic dipole
moment of the electron in in the 4d state. (Express your
answer in terms of µB. )

45. For a 3d electron in an external magnetic field of

2.50 × 10−3 T , find (a) the current associated with the

orbital angular momentum, and (b) the maximum torque.

46. An electron in a hydrogen atom is in the n = 5 ,

l = 4 state. Find the smallest angle the magnetic moment

makes with the z-axis. (Express your answer in terms of
µB. )

47. Find the minimum torque magnitude | τ→ | that acts

on the orbital magnetic dipole of a 3p electron in an

external magnetic field of 2.50 × 10−3 T .

48. An electron in a hydrogen atom is in 3p state. Find the
smallest angle the magnetic moment makes with the z-axis.
(Express your answer in terms of µB. )

49. Show that U = − µ→ · B→ .

(Hint: An infinitesimal amount of work is done to align
the magnetic moment with the external field. This work
rotates the magnetic moment vector through an angle −dθ
(toward the positive z-direction), where dθ is a positive

angle change.)

8.3 Electron Spin

50. What is the magnitude of the spin momentum of an
electron? (Express you answer in terms of ℏ.)

51. What are the possible polar orientations of the spin
momentum vector for an electron?

52. For n = 1, write all the possible sets of quantum

numbers (n, l, m, ms ).

53. A hydrogen atom is placed in an external uniform
magnetic field ( B = 200 T ). Calculate the wavelength of

light produced in a transition from a spin up to spin down
state.

54. If the magnetic field in the preceding problem is
quadrupled, what happens to the wavelength of light
produced in a transition from a spin up to spin down state?

55. If the magnetic moment in the preceding problem is
doubled, what happens to the frequency of light produced
in a transition from a spin-up to spin-down state?

56. For n = 2 , write all the possible sets of quantum

numbers (n, l, m, ms ).
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8.4 The Exclusion Principle and the Periodic

Table

57. (a) How many electrons can be in the n = 4 shell?

(b) What are its subshells, and how many electrons can be
in each?

58. (a) What is the minimum value of l for a subshell that
contains 11 electrons?

(b) If this subshell is in the n = 5 shell, what is the

spectroscopic notation for this atom?

59. Unreasonable result. Which of the following

spectroscopic notations are not allowed? (a) 5s1 (b) 1d1

(c) 4s3 (d) 3p7 (e) 5g15 . State which rule is violated for

each notation that is not allowed.

60. Write the electron configuration for potassium.

61. Write the electron configuration for iron.

62. The valence electron of potassium is excited to a 5d
state. (a) What is the magnitude of the electron’s orbital
angular momentum? (b) How many states are possible
along a chosen direction?

63. (a) If one subshell of an atom has nine electrons
in it, what is the minimum value of l? (b) What is the
spectroscopic notation for this atom, if this subshell is part
of the n = 3 shell?

64. Write the electron configuration for magnesium.

65. Write the electron configuration for carbon.

66. The magnitudes of the resultant spins of the electrons
of the elements B through Ne when in the ground state
are: 3ℏ/2, 2ℏ , 15ℏ/2, 2ℏ , 3ℏ/2, and 0,

respectively. Argue that these spins are consistent with
Hund’s rule.

8.5 Atomic Spectra and X-rays

67. What is the minimum frequency of a photon required

to ionize: (a) a He+ ion in its ground state? (b) A Li2+

ion in its first excited state?

68. The ion Li2+ makes an atomic transition from an

n = 4 state to an n = 2 state. (a) What is the energy of

the photon emitted during the transition? (b) What is the
wavelength of the photon?

69. The red light emitted by a ruby laser has a wavelength
of 694.3 nm. What is the difference in energy between the
initial state and final state corresponding to the emission of
the light?

70. The yellow light from a sodium-vapor street lamp is
produced by a transition of sodium atoms from a 3p state to
a 3s state. If the difference in energies of those two states is
2.10 eV, what is the wavelength of the yellow light?

71. Estimate the wavelength of the Kα X-ray from

calcium.

72. Estimate the frequency of the Kα X-ray from cesium.

73. X-rays are produced by striking a target with a beam
of electrons. Prior to striking the target, the electrons are
accelerated by an electric field through a potential energy
difference:

ΔU = −eΔV ,

where e is the charge of an electron and ΔV is the voltage

difference. If ΔV = 15,000 volts, what is the minimum

wavelength of the emitted radiation?

74. For the preceding problem, what happens to the
minimum wavelength if the voltage across the X-ray tube
is doubled?

75. Suppose the experiment in the preceding problem is
conducted with muons. What happens to the minimum
wavelength?

76. An X-ray tube accelerates an electron with an applied
voltage of 50 kV toward a metal target. (a) What is the
shortest-wavelength X-ray radiation generated at the
target? (b) Calculate the photon energy in eV. (c) Explain
the relationship of the photon energy to the applied
voltage.

77. A color television tube generates some X-rays when
its electron beam strikes the screen. What is the shortest
wavelength of these X-rays, if a 30.0-kV potential is used
to accelerate the electrons? (Note that TVs have shielding
to prevent these X-rays from exposing viewers.)

78. An X-ray tube has an applied voltage of 100 kV. (a)
What is the most energetic X-ray photon it can produce?
Express your answer in electron volts and joules. (b) Find
the wavelength of such an X-ray.

79. The maximum characteristic X-ray photon energy
comes from the capture of a free electron into a K shell
vacancy. What is this photon energy in keV for tungsten,
assuming that the free electron has no initial kinetic
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energy?

80. What are the approximate energies of the Kα and Kβ

X-rays for copper?

81. Compare the X-ray photon wavelengths for copper
and gold.

82. The approximate energies of the Kα and Kβ X-rays

for copper are EKα = 8.00 keV and EKβ
= 9.48 keV,

respectively. Determine the ratio of X-ray frequencies of
gold to copper, then use this value to estimate the
corresponding energies of Kα and Kβ X-rays for gold.

8.6 Lasers

83. A carbon dioxide laser used in surgery emits infrared

radiation with a wavelength of 10.6 µm . In 1.00 ms, this

laser raised the temperature of 1.00 cm3 of flesh to

100 °C and evaporated it. (a) How many photons were

required? You may assume that flesh has the same heat of
vaporization as water. (b) What was the minimum power
output during the flash?

84. An excimer laser used for vision correction emits
UV radiation with a wavelength of 193 nm. (a) Calculate
the photon energy in eV. (b) These photons are used to
evaporate corneal tissue, which is very similar to water in
its properties. Calculate the amount of energy needed per
molecule of water to make the phase change from liquid
to gas. That is, divide the heat of vaporization in kJ/kg by
the number of water molecules in a kilogram. (c) Convert
this to eV and compare to the photon energy. Discuss the
implications.

ADDITIONAL PROBLEMS

85. For a hydrogen atom in an excited state with principal
quantum number n, show that the smallest angle that the
orbital angular momentum vector can make with respect to

the z-axis is θ = cos−1 ⎛
⎝

n − 1
n

⎞
⎠.

86. What is the probability that the 1s electron of a
hydrogen atom is found between r = 0 and r = ∞?

87. Sketch the potential energy function of an electron in
a hydrogen atom. (a) What is the value of this function at
r = 0 ? in the limit that r = ∞ ? (b) What is unreasonable

or inconsistent with the former result?

88. Find the value of l , the orbital angular momentum

quantum number, for the Moon around Earth.

89. Show that the maximum number of orbital angular
momentum electron states in the nth shell of an atom is

n2 . (Ignore electron spin.) (Hint: Make a table of the total

number of orbital angular momentum states for each shell
and find the pattern.)

90. What is the magnitude of an electron magnetic
moment?

91. What is the maximum number of electron states in the
n = 5 shell?

92. A ground-state hydrogen atom is placed in a uniform

magnetic field, and a photon is emitted in the transition
from a spin-up to spin-down state. The wavelength of the
photon is 168 µm . What is the strength of the magnetic

field?

93. Show that the maximum number of electron states in

the nth shell of an atom is 2n2 .

94. The valence electron of chlorine is excited to a 3p
state. (a) What is the magnitude of the electron’s orbital
angular momentum? (b) What are possible values for the
z-component of angular measurement?

95. Which of the following notations are allowed (that
is, which violate none of the rules regarding values of

quantum numbers)? (a) 1s1; (b) 1d3; (c) 4s2; (d) 3p7;

(e) 6h20

96. The ion Be3+ makes an atomic transition from an

n = 3 state to an n = 2 state. (a) What is the energy of

the photon emitted during the transition? (b) What is the
wavelength of the photon?

97. The maximum characteristic X-ray photon energy
comes from the capture of a free electron into a K shell
vacancy. What is this photon frequency for tungsten,
assuming that the free electron has no initial kinetic
energy?

98. Derive an expression for the ratio of X-ray photon
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frequency for two elements with atomic numbers Z1 and

Z2.

99. Compare the X-ray photon wavelengths for copper
and silver.

100. (a) What voltage must be applied to an X-ray tube to
obtain 0.0100-fm-wavelength X-rays for use in exploring
the details of nuclei? (b) What is unreasonable about this
result? (c) Which assumptions are unreasonable or
inconsistent?

101. A student in a physics laboratory observes a
hydrogen spectrum with a diffraction grating for the
purpose of measuring the wavelengths of the emitted
radiation. In the spectrum, she observes a yellow line and
finds its wavelength to be 589 nm. (a) Assuming that this
is part of the Balmer series, determine ni, the principal

quantum number of the initial state. (b) What is
unreasonable about this result? (c) Which assumptions are
unreasonable or inconsistent?
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